
Parallel Multiprocessor Computing Model
Using Independent Active OPUs

Snow-white paper

Mental research and proof of concept

Copyright 2007, by ProData PE. All rights reserved

Vladas Saulis

ProData PE
Klaipeda
Lithuania

February 17, 2007

Abstract
It is going to require quite a revolution

 in software programming

(Dr Mark Bull,
Edinburgh Parallel
Computing Centre)

In the recent times we are facing a new shift in computing philosophy, caused
by advance of new hardware architecture and even better performance. Multi-core
architecture will become prevailing in near future. What we can do in order to take
advantage of this? This paper is about the one of possible solutions we can have.

My proposed computing model also provides some answers to questions raised
in recently published paper form Berkeley [1]. Here is a short list of advantages that
can be reached using this model:

 Simple programming process and further maintenance
 Natural OPU (CPU) integration and migration (processing units can be

added or removed on the fly)
 Automatic load-balancing
 No need of synchronization between task parts
 Little or no mutual locking on the system level

Lets see OPU programming model in more details.

Introduction

Lets imagine that every computing operation or object executes on different
local or remote CPU. That CPU takes the object code and executes it indifferently.
That means it doesn’t care about the code it executes. So we call it OPU (Object
Processing Unit). Every OPU is preloaded with simple round-robin multitasking (will
be explained later) operating system with one or more language (object) interpreters.
Lets see the simple example code:

for (i=0; i<N; i++) {
a = a + b[i] * c[i];

}

Now lets introduce two new properties for every object of this task; for instance,
variable a would have a.complete and a.incomplete properties. In my model
there will be more additional properties, but we stop by these two for now. What does
that change in calculations? It gives us the possibility to split execution! Now when
the task in some stage will meet the statement like

z = a + 1;
(which is also executed on separate OPU) it can now check variable a for
completeness. In case this variable is still incomplete, the underlying logic can decide
what to do in this case. It can wait for completeness, or it can be happy even with
incomplete result, intervening and adding 1 to intermediate result. For the case the
task logic must have a completed variable, it waits for it; in the same time other parts
of the task still can be executed on other OPUs.

The OPU computing model also presumes the use of transactions. In case of
some cyclic operations programmer must be sure that all variables changes in that
cycle are made isolated and iterations had not been missed or lost. Obviously, there
must be some support from compiler or operating system to take care of transaction
commits and rollbacks.

Now we have some starting points for understanding the whole concept of OPU
computing model. So, there are OPUs, tasks (set of objects) and object queue.

OPUs, Tasks and Queue

As we considered before – every single operation or object method can (but
not necessary) be executed on separate OPU (remote or local). OPUs can be local
processing units, like CPUs, FPUs, GPUs, specialized CPUs, IO processors, or any
other kind of processing units. The remote OPU can be a whole remote computing
unit, or any particular CPU within it. OPUs can be grouped by their characteristics
and/or specialization.

OPUs are pro-active! This is a main difference from all existing computing
models. This means that every single OPU decides what part of current task’s
operation to extract from the queue. Also, as I stated before, OPU doesn’t care about
the executed code or data (like normal CPU). It’s a responsibility of the task (and
programmer) to provide information about the required OPU type (or group) to the
queue.

Now we came to the concept of task. First of all, - the task is not a process like
in today’s computing. It doesn’t belong to any OPU. It is initiated by placing initial
code (or method) into the queue too (by operating system or by external injection).
And since then you cannot tell exactly which OPU will accept it for execution.

In OPU model the task is a persistent object database in system memory. I
intentionally don’t separate RAM and other storage (disks or whatever). It is a full
responsibility of operating system to provide a transparent access to this object
database.

And here I can present a bird-fly picture of OPU processing model:

Fig. 1

The main principles of the proposed System are:

 Unidirectional flow of control
All calculations in the system are done through the queue, with no
acknowledgement or return of control from OPU, which will be in
charge of executing the particular operation (or object method). The

result of any operation is always a direct manipulation with the task’s
persistent object database.

 No return points in program logic flow
This means that there is no place for legacy functions and procedures
in OPU model, because they provide return values and so can regulate
the flow of control.

 No processes as a solid code chunks in RAM memory, which are executed by
assigned CPU(s).

There is a persistent object database in any memory instead

 Isolated sub-context (subtasks)
When some object method is executed on particular OPU, there can be
local sub-context (or subtask) organized. This can be thought of as
local closures as they exist in modern computing languages. It also can
be treated as a local sub-transaction.

 OPUs are pro-active
Each OPU is responsible for extracting the object methods for
execution. No one OPU can be charged to do some task from outside.

 OPUs can be added or removed dynamically
When some new OPUs appears in the system they just start to do their
job – extracting and executing code from the queue. By analogy, any
removed OPU just stops extracting the code from object queue. So,
when system performance goes down, you can just add some amount
of OPUs to the system (remember – they can be remote too).

 Any OPU can pass to execute any operation remotely too, by putting it to the
queue!

This is the most important thing to understand. This is a very basis of
the OPU computing model. This is a gateway to true parallelism.

As you can see, everything in the system is spinning around the queue. So the
only measure of overall system performance is - the current length of the queue.

Next important thing: Each OPU can execute several objects at the same time
and not necessary from the same task. It is achieved by having a tiny multitasking
operating system preloaded for each OPU. In this case each OPU can perceive its
performance by itself. If it decides to be overloaded, it just stops extracting new
objects form the queue, or lowers the rate of acquiring objects from it. By having very
simple set of rules for polling the object queue, we can achieve natural self-balancing
between OPUs in the system. On the other hand we can achieve an optimal load in
case of many OPUs almost automatically.

For performance reasons not all objects in the system must be executed on
different OPUs. For that purpose I can introduce some other built-in properties for
objects. First of all there must be .local and .remote properties, as well as .OPU
property. For those operations which must be done continuously on the same OPU we
can set .local property. If we decide that the operation can be processed in parallel, or
in other OPU environment – we set .remote and .OPU properties. .OPU property

should be an object with the set of system setting which go to the queue. Other OPUs
extract operations in accordance with these settings. Not every object can be extracted
by particular OPU! The .OPU property can be set so, that this operation is dedicated
to a “real-time” OPU group, for example, or it could be dedicated to OPU from
particular IP address from outside system. It can be directed for specialized GPU or
IO processor.

To sum everything up, I can present a list of characteristics and some unusual side
effects of the proposing OPU computing model:

 Self load-balancing
 Seamless OPU migration
 Prioritizing using OPU groups (real-time, normal, batch)
 Simple programming at application level
 Programming logic becomes a state transition logic, and not sequential
 No threads, minimum locking and race conditions at the system level
 High system reliability; in case of some of OPUs failure, the whole system

still can remain stable.
 Object reuse and method reloading on the system level
 Another similar object can be requested in case if current object fails
 Inter-task communication (former IPC) – simply by placing a foreign task’s

object to the queue.
 Direct object injection into the queue

An Example

This is another variation of a simple cycle, which is adapted for parallel calculation:

// Language Pseudo JavaScript

CycleAdd = function () {
var a = 0; // accumulator
var b = [1,2,3,4,5,6,7,8,. . .];
var c = [10,20,30,40,50, . . .];

task: “CYCLEADD”

init: function () {
a.transaction.Start();

for (var i=0; i<b.length; i++) {
a.incomplete +=

bigOperation(b[i],c[i]).complete;
}

a.transaction.End();

if (a.transactionSuccess) {
a.transaction.Commit();

}
else {

a.transaction.Rollback();
a.error = true;

}
}

bigOperation: function (op1, op2) {
var mult;
Calculations.task = “CYCLEADD.CALC”;
mult = Calculations.multiply(op1,op2);
mult.incomplete +=

Calculations.divide(op1,op2);
return (mult);

}

this.add.OPU.local = true;

this.bigOperation.OPU.local = false;
this.bigOperation.OPU.remote.hostname = “localhost”;
this.bigOperation.OPU.language = “Javascript”;
this.bigOperation.OPU.group = “CPU.generic”;

Calculations.OPU.local = false;
Calculations.OPU.remote.IP = “212.212.212.254”;

 Calculations.OPU.language = “Machine”;
Calculations.OPU.group = “CPU.binary”;

}

I’d like to state here that it’s only a pseudo-code, although it looks like real
Javascript code. Some internal mechanics of existing Javascript interpreters still are
missing for make this code work for parallel computations. However, some emulation
of parallelism is possible by use of AJAX-like technologies even now. But even in
this case it would be only passive OPU calculations.

Now, we will look how this code could be executed in case of pro-active OPU model
(fig 2).

Fig. 2

As you can see, we don’t even need any special “parallel or distributed”
language. All we need is – to change internal semantics of the compiler or interpreter
slightly, in order to work in parallel environment.

The above example shows how calculations are parallelized in OPU
computing model. The initial object consists of local variables-properties a, b and c.
Variable a is an accumulator for this cyclic addition program. To initiate the process,
we put init() method into the queue. One of OPUs takes this method to
execution, and then it sends all iterations of the for() cycle back to queue. Iterations
(bigOperation() method calculation) then, in their turn, are taken by other
OPUs, which belong strictly to corresponding OPU group, stated in the sending
object’s code (OPU.generic). All iterations are calculated in parallel and accumulated
in variable a. Since an addition operation is transitive, additions can happen in any

order, just as the results come. Thus, we can point interpreter to operate with
incomplete intermediate values of our accumulator variable, and we set its property to
a.incomplete. And this is the interpreter’s responsibility to make sure that
every addition would be performed atomically. Although, alternatively, we can
establish a manual lock, having another internal property a.lock, for example.

Meanwhile, there is another task existing in the system (pre-launched, or it
even can be a system task with other name), called CYCLEADD.CALC, which
provides us with Calculations object and its methods. So, each
bigOperation() method now injects two Calculations methods into the
queue, and, again, are taken by any available OPU (busy or not) of corresponding
kind (binary in this example). The binary type of OPU could mean that
Calculations object probably is implemented as a legacy binary executable,
written in C or C++, and is executed in non-parallel manner. Parallelization may end
at this point.

The injection of both methods simultaneously becomes possible, because their
addition is also transitive, so we can have mult.incomplete value here by design
too. Note, that execution stops only when we have to wait for completed value.

As you can realize, bigOperation() method has a return statement. But
this is only a syntactic sugar. But in reality, mult variable is sent indirectly to the
context of init() method, which resides in the CYCLEADD task. When calling
some method, a calling side must create a temporary variable in its context, so the
called method could associate its internal variable(s) to it. After all that, the OPU
which still executes an init() method, can add the completed value of mult to
incomplete value of a. So, the return statement only tells interpreter what internal
variable to set for result.

Transactions and Versioning

Parallel OPU computation principle may be simplistically seen as a multi-user
database access. We may consider that every parallelized operation is a ‘user’, which
is accessing local or remote data on some server. Each ‘user’ sends the data together
with code to a particular remote database server and hopes it will be executed.
However, it doesn’t expect the calculated results to come back immediately, instead,
it polls for the results in some time in future (when results are really needed by
program logic). If results are not yet ready the program, depending on its internal
logic, may either stop execution of the statement and continue polling results, or may
set an error condition. And such behavior is a very important moment for all parallel
OPU model! In case of error conditions we may have a chance to use alternative
ways for performing operations. This is a possible way in creation of self-healing
reflecting and redundant systems, which may adequately respond in timely changing
or unstable systems and environments. More than that – the erroneous parts and paths
of such systems are isolated from the execution path so this may lead to almost of no
impact to the overall process.

You may already realize that we need some transactional mechanics and
protocols defined for working in such highly parallel and cross-domain environments.
This transactional protocol is also needed when using cycle-level parallelism. How
does the parallel program would know that all iterations of the cycle are processed
and processed correctly? In other words – how to know that all in-cycle data is
acquisited correctly? This is a place where transactions come to light. Cycles may be
small but may also be huge, spreading across multiply domains or performing huge
internal subtasks. And we need to know that every part of resulting data came
correctly (or even incorrectly, or didn’t come at all). There must be mechanism to
mark every cycle’s iteration, sending the version number together with the request,
and then to check against this number when results come back. When all iterations’
results have come, the transaction may be committed; otherwise it could be rolled
back or another appropriate actions may have been taken. You may, again, see the
similarities with the multi-user database environments here.

Versioning is another important part in parallel multiprocessor computing
using proposed model. Ones there are transactions - there should be versioning too.
Furthermore, versions may be used even without their connection to transactions.
Every single operation (or program statement) may operate on a particular variable
version if needed. Suppose you have a real-time nuclear reactor process. You are
performing some operations in a cycle, which increases some variable’s value. The
cycle may go forever, but when the number of iterations or the variable itself reaches
some critical point, it must trigger an action. Every version of variable may be
accessed along the way and used in upcoming program logic. This logic can even be
generated or set on the fly. This is another very important impact of proposed parallel
computing model. When there is no necessity for getting results immediately (waiting
for execution path to return), the above program or system behavior becomes
possible.

Levels of Parallelism. Locks and Stacks

Although cycle-level parallelism is the most obvious usage case, our proposed
model is not limited only to it. In our model parallelisation may occur at any
abstraction level. It may also be statement-level, object-level, and in some future,
even instruction-level. Everything depends on parallel program design. The design
itself now is not limited to an old sequential psychology. The important note here is
that our model is not only for making existing program algorithms to run in parallel
way, but also for creating brand new set of programs and systems, which becomes
possible with our new paradigm. Statement-level parallelism means that the program
is executing its statements all at once, while some of statements will wait for
upcoming data and/or events. Thus, the overall program task becomes self-executing
and existing until it either receives an explicit halting instruction (by injection), or
naturally completes all incomplete variables within statements.

Execution paths of all statements are disconnected. This fact completely
eliminates the current practice of using stacks for execution control. Stacks are of no
use in such parallel environment. If there is no need of legacy subroutines, - no need
of stacks! All execution becomes data-driven instead of process-driven. All execution
synchronization is separately done by each data object and in isolation with other
objects. Locking becomes data-bound and is more simple, isolated, smooth and
manageable, which is opposite to process-bound locking. Data-bound locking is more
self-contained (because it can be completely described by data container) and does not
interfere much with other parts of the task.

The Timeout Problem

One of the main possible problems in our proposed Object Flow Model (this is
another name for the proposing parallel computing model), which stands in front of
all other - is a Timeout problem. This problem plays intact with well-known Halting
problem [5], the paraphrased version of which could be following:

“Given a program and an input to the program, determine how long the
program will be executed when it is given that input”.

For our parallel model this question becomes very important. How long any
variable should wait for the result? What time is to be set to finally ensure that the
variable cannot be completed because of possible fault, cycling, connection lost or
whatever else? This also is important for choosing alternative paths in case of errors.

One possible solution is to make parallel operations so smooth that ever
happening long timeouts could mean an inevitable fault. However, this solution stops
working when a high level of parallelisation hierarchy is reached. Another possible
solution is a prediction by fact mechanism. We can set predicted and/or predefined
timeout values basing on previous execution times of similar or same operations.
Anyway, the Timeout problem is still an open question and may be qualified as the
most important problem.

How to Implement?

As we can see from example, we need not invent any new specialized
programming languages in order to implement the proposed parallel computing
model. All we need is - to slightly modify the behavior of existing ones. Also, in order
to take the full advantage of the model, it would be good to write a special Operating
System, based on these concepts.

These goals may be achieved by following three steps:

 First step - emulator. Modify existing languages behavior by adding
special objects and classes, which can imitate parallel behavior.
Parallelisation then may be done using classic client-server approach.
The only requirement would be to have the same language at both
sides (at every executing peer). One of possible real-life
implementations could be – to use JavaScript environment at Web
browser, as well as at the Web server, using Ajax for making
asynchronous calls for object propagation and acquisition. This first
step is to be used only for proving the concept, emulating parallel
environment. The complete solution can’t be achieved at this step.

 Second step – interpreter. Modify existing language interpreter to
handle parallel behavior. At this step specialized objects and classes
must be incorporated into the language. The modified interpreter must
implicitly provide us with calls to other local or remote peers for
placing objects and the data into local/remote queues, as well as
provide an in-built interface for further polling of results.

 Third step – complete parallel OS. There can be two phases during OS
implementation. First and most simple implementation can be based on
an existing OS, with preference to message-passing micro-kernel-
based ones, such like Mach or Hurd. A message-passing OS
architecture could be naturally exploited for making parallel OS
prototype. Next phase should be a complete specialized parallel OS.

Works on first step implementation have already been started. You can find
our Proof of Concept project page at: http:// 195.178.176.98/Memel.

Conclusion

The proposed Object Flow Model shows how it can be possible to design self-
parallelized programming languages and systems and, at the same time, to fully utilize
any dynamic range of available processor units (or OPUs) in a self-balanced way.
Object Flow Model also shows that parallel program may completely eliminate any
sequential parts out of program. Even seemingly strict sequential parts of program
become just a set of occasional mutual wait operations, which are, in their turn,
executed in parallel. There is no place for sequential programming in this model
anymore! And this is the most important result of proposed model, which may revise
or even break the famous Amdahl’s – Gustafson’s Law [4] in some near future.

References

[1] The Landscape of Parallel Computing Research: AView from Berkeley,
 Dec 18, 2006, http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.html

[2] Cleo Saulnier, “Software Development by Vorlath”, blogposts series,
http://my.opera.com/Vorlath

[3] Vladas Saulis, “Infinite Power Computing Theory”, blogposts series,
http://my.opera.com/vladas

[4] Gene Amdahl. Validity of the Single Processor Approach to Achieving Large-
Scale Computing Capabilities. AFIPS Conference Proceedings, (30), pp. 483-485,
1967.

[5] Alan Turing. On computable numbers, with an application to the
Entscheidungsproblem. Proceedings of the London Mathematical Society, Series
2, 42 (1936), pp 230-265, 1936.

