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Abstract 

This paper presents a new programming model that can utilize multi-core CPU 

systems in a simple and auto-balanced way. This model also proposes an easier 

programming paradigm for developing parallel tasks and systems in most massively 

parallel computation areas, such as weather prediction, nuclear physics, search 

engines, etc.   

In recent times we are facing a new shift in computing philosophy, caused by 

advance of new hardware architecture and even better performance. Multi-core 

architecture will become prevailing technology in the near future.  

What can we do in order to take advantage of this? This paper is about one of the 

possible solutions we can have.  

The proposed computing model (which is named “Object Flow Model”) also 

provides some answers to questions raised in the well-known published paper form 

Berkeley [1]. Here is a short list of advantages that can be reached using this model: 

• Simple programming process and further maintenance 

• Natural OPU (CPU) integration and migration when object processing units 

(OPUs) can be added or removed on the fly 

• Automatic load-balancing 

• No need for synchronization between task parts 

• Little or no mutual locking on the system level 

 

All these characteristics are implemented in the Parallel JavaScript Machine (PJM), 

which is described below in this document. PJM may be perceived as a mini 

operation system which controls multiple JavaScript tasks, multiple users and 

multiple front-end consoles. 

 

 

1. Introduction 

The main goal of PJM (OS) is to simplify parallel programming by introducing special instructions 

(hints) that are represented by specifically crafted comments in form of //#pragma <name>.  

The Parallel JavaScript Machine uses NodeJS, and is implemented as a Web server for the 

frontend, as well as a server for the OPUs that really do the parallel execution of code. OPUs 

are small JavaScript network clients implemented in NodeJS too. There may be as many of 

them as necessary, connected to the main parallel machine server either locally or remotely. 

The overall performance of parallel processing strongly depends on the number of connected 

OPUs. 

All system parts, working together, may be understood as a mini-OS which launches and 

parses the running JavaScript tasks, puts their chunks into system execution queue and provides 
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some kind of cooperative multitasking between selected chunks. The calculation results are 

printed to the Web client's console by pipelining console.log output from OPUs through 

the main server. Every OPU is assigned to its own CPU (local or remote) and works through a 

simple round-robin scheduler (will be explained later). This is achieved by use of PM2 process 

manager Node module. 

“Although compatibility with old binaries and C programs is valuable to industry, and some 

researchers are trying to help multicore product plans succeed, we have been thinking bolder 

thoughts. Our aim is to realize thousands of processors…”[1] not necessary on the single 

physical computer, but throughout the network, all orchestrated by the central server unit. From 

the system point of view all CPUs/OPUs are operating via internal network socket protocol 

which doesn’t make distinction between local and remote CPUs. The server (PJM) and clients 

(OPUs) – all written in JavaScript, so it’s not compatible with C binaries [yet]. 

All parallel programs, which are running in PJM, must not be using ES6+ JavaScript 

extensions (must be using ES5). It’s important to state here that such extensions as classes, 

arrow functions, lets and consts, and, especially, async/await are hardly parallelizable, 

requiring more thorough JavaScript internals research. This is why PJM is running on NodeJS 

V8.2.1. All node modules are locked to this version for better performance and clarity of 

concepts. 

PJM is controlled and tasks are running using Web Console which resides at http://parallel-

js.net:8888. Here is how it usually look like: 
 

 
Fig. 1 Parallel JavaScript Machine Web Console 

 

The Web Console is written using the ExtJS framework and connected to the PJM server 

with the use of express.js HTTP NodeJS module. Another part of Web Console (called Console 

and Messages) is connected using WebSockets. This is where all programs’ output and system 

messages are coming in real time. It is important to know that no real calculations are performed 

in the Web Console – all calculations are done on the PJM server and OPUs. 
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2. System design and implementation 

 

Consider following trivial code snippet: 

for (i = 0;  i < N;  i++) { 

    a = a + b[i] * c[i]; 

}     example 1. 

 

Now, after inserting //#pragmas for parallel execution, the same code will look as follows: 

 

//#pragma parallel 

//#pragma parvar a 

for (i = 0;  i < N;  i++) { 

    a = a + b[i] * c[i]; 

} 

//#pragma wait   example 1a. 

2.1. #pragmas – an instrument for parallelization 

 

All of #pragmas are interpreted during task (the running parallel JS program) launch and 

initialization. First, recursive parallelizer, then – analyzer, both of them find and apply all  #pragma 

hints. 

Here is a complete list of #pragmas with their meanings (omitting the pragma keyword): 

• sequential – runs task in legacy sequential mode; 

• parallel – running next part of task in parallel mode; 

• wait – it is an assembly point of a program; system waits for all program chunks to 

be finished, and all parvars are in unlocked state; system enters idle state (if no other 

tasks are running) and calls parallelizer; 

• parvar <varname> - automatically handles var’s locking and unlocking between 

program chunks; 

• noautoparvar – disable automatic handling of all parvars; manually use get and 

set functions (explained below); 

• beginblock – mark the beginning of parallel block, creating new task chunk for 

execution on OPU; 

• endblock – set the end of parallel block chunk and send chunk to execution queue; 

• cache <varname> – cache task variable to current OPU; 

• cachefuncs – cache all functions to current OPU; 

• dive – parse AST of current loop for parallelizing inner loop; 

• remotedom/noremotedom – turn on/off remote DOM feature; 

• dombuffersize <number> – number of DOM operations in the buffer; 

• keepsetvars/resetsetvars – keep/reset static variables; 

• starttime – report program start time; 

• endtime – report program end time; 



• numopus – overall active OPUs number in the system; creates internal variable 

__numOPU; 

 

There also are internal OPU functions which are handful for direct use in programs: 

• __get_Par_Var_Value(<varname>, <force lock>, __job) – get task 

variable from the server and lock it, if it’s possible. Force locking if the second 

parameter is true; 

• __set_Par_Var_Value(<varname>, <varvalue>, __job, 

<force>, <slice>)- set task variable, unlocking it; force unlock if force is 

true; slice array if applicable; 

• __RPC_set(<varname>, <varvalue>, __job, <force>, 

<script>, <params>, <taskvars>) – remote script invocation on the 

server; 

• __remoteDOM(<script>) – DOM functions, as well as other operations, which 

are passed through the server to Web client using WebSocket; 

• __read_File_Sync(<path>, <blocking>, __job) - read any file from 

program’s directory; 

• __write_File_Sync(<path>, <data>, <options>, <append>, 

__job) – write to the file in program’s directory; 

 

 

2.2. Tasks, Task variables and Queue 

 

Like any other OS, the Parallel JavaScript Machine Mini-OS has a kernel. The kernel operates 

with such internal structures as the Queue object, Task list and Task variables object. 

When the task is launched, its source code is passed to parallelizing function, where it is 

separated into single statements (also can be grouped in blocks). Every statement or block then 

enqueued into the system's Queue for execution by OPUs, which are connected to the server and 

extract these statements from the Queue one by one in no predetermined OPU order. In parallel 

programming terms it is said that the tasks are parallelized on the statement level, or 

with statement granularity.  

The parallelization process is controlled by special instructions (or hints), called #pragmas. 

Some of them sets the start of parallel/sequential code, other sets beginning/end of blocks, parallel 

variables (so-called Parvars), begin/end of the process timing. One of them, #pragma wait, is very 

important for the parallelization flow control and marks the assembly point in the task. At this 

point the parallelization of the task is suspended until all pending parallel chunks of code have 

finished their execution (for parallel loops it waits for all iterations to complete). After that the 

process of parallelization resumes from this point. The 'wait' process in the system is really non-

blocking, letting other parts of the task continue their execution, which is exactly opposite to the 

ordinary one-threaded JavaScript interpreter. 

During the process of parallelization, when some statements contain an internal block of 

statements (such as loops, marked blocks), the analyzer function is called. It provides more 

specialized lexical interpretation of code logic. For example, it interprets for loop's initial 

expression, condition and step. This information is then added to the parallel code chunks as an 

extra internal code. 



Another important part of parallel tasks execution is the task variables handling. All task's 

variables are stored within the server Task object. Before the task chunk is put into the Queue, 

the parallelization function determines which variables are in use within this chunk. It puts these 

variables along with their values as a definition to the preamble of the code. After execution of the 

code chunk, the resulting values of variables are returned and set back to the server's task variables 

object.  

There are some special parallel variables (Parvars), which are handled differently. These 

variables are declared by the #pragma parvar <var name> special instruction. This means that 

these variables can be accessed and set concurrently. All 4 basic arithmetic operations are transitive 

(if processed one by one), so they can be processed in any order, and the result will always be the 

same. The parallel for loop works exactly in this way. So, the accumulator variable for the loop 

must be set in the way that it could be accessed and modified concurrently. This is what Parvars are 

for. The kernel adds additional code fragments that synchronously calls the main server for parallel 

variable value and locks it in order to be modified after the code chunk had finished its execution. 

It is important that the code chunk needs to be fast and atomic, so it would lock the parvar for as 

short a time as possible. 

 

Here is a bird’s-eye view picture of OPU parallel processing model: 

 

 

Figure 2. OPU parallel processing model – Parallel JavaScript Machine 

 

2.3. Object processing unit 

 

The OPU (Object Processing Unit) is a lightweight networking client (worker) which does the 

actual processing of parallelized chunks of code. OPU connects to the main server and scans the 

Queue for the next job in FIFO manner. When it finds a job, it executes it, returns the result (task 

variables) and scans again. If no jobs are found it enters an idle loop and waits. Therefore, OPUs 

are pro-active because they initiate job extracting and processing. There may be an unlimited 

number of OPUs, connected to the main server - locally or remotely - and working independently. 

Their number is only limited by the server's processing power and the network speed. 

 



 

Figure 3 OPU dependence on Queue 

 

The OPUs have another very important function. When they meet Parvars, they connect 

directly to the main server to get real time value of Parvar, and after Parvar has changed its value, 

they connect again and set its changed value to the corresponding task variable. When OPUs are 

processing Parvars in such a way, these are locked on the server to prevent race condition. Thus, 

it's said that the system has data bound control flow, which is opposite to the statement level control 

flow, as is usual for non-parallel systems. 

The main principles of the OPU relations with the PJM are the following: 

 

• Unidirectional flow of control 

All calculations in the system are done through the queue, with no 

acknowledgement or return of control from OPU, which will be in charge 

of executing the particular operation (or object). The result of any operation 

is always a direct manipulation with the task’s persistent variables object.  

• No return points in program logic flow 

This means that there is no place for legacy functions and procedures in 

OPU model, because they provide return values and that can regulate the 

flow of control. 

• No processes as solid code chunks in RAM memory, which are executed on 

assigned CPU(s). There is a persistent object database in any memory 

instead. 

• OPUs are pro-active 

Each OPU is responsible for extracting the object from queue for execution. 

No one OPU can be charged to do some tasks from outside. 



• OPUs can be added or removed dynamically 

When any new OPUs appear in the system, they just start doing their job – 

extracting and executing code from the queue. By analogy, any removed 

OPU just stops extracting the code from the object queue. So when system 

performance goes down, you can simply add some amount of OPUs to the 

system to improve performance (remember – they can be remote). 

 

• Any OPU can pass to execute any operation remotely as well, by putting it to the 

queue.This is the most important thing to understand. This is the very basis of the 

OPU computing model. This is the gateway to true parallelism (now in 

development). 

 

As is evident, everything in the system is spinning around the queue. And the only measure 

of overall system performance is - the current length of the queue.  

To sum everything up, below is a list of characteristics and some unusual side effects of the 

OPU computing model: 

 

• Self load-balancing 

• Seamless OPU migration 

• Prioritizing using OPU groups (real-time, normal, batch) 

• Simple programming at application level 

• Programming logic becomes a state transition logic, and not sequential 

• No threads, minimum locking and race conditions at the system level 

• High system reliability; in case of failure of some OPUs, the whole system still 

remains stable.  

• Object reuse and method reloading on the system level 

• Another similar object can be requested in case the current object fails 

• Inter-task communication (former IPC) – simply by placing a foreign task’s object 

to the queue. 

• Direct object injection into the queue (in future versions) 

 

2.4.   System scheduler and Idle cycle 

 

All OPUs are connected to the main system server via single network socket in non-blocking 

mode. When no new task chunks are available, the OPU enters an ‘idle’ state and waits for a 

‘wake-up’ command, which is sent when a new chunk has appeared in the system queue. Every 

new chunk, when posted to the queue, is followed with the ‘wake-up’ command. When OPU gets 

the ‘wake-up’, then it sends ‘getjob’ back to the server to get new job. 

As soon as the system server receives the ‘getjob’ command, it calls parallelizer (when all 

current chunks are finished), with possibly new chunks added to the system queue, and then it 

enters system scheduler. System scheduler works around system queue and has two modes:  

1 – chunks are processed in queue order (FIFO); 

2 – chunks are processed in tasks order (cooperative multitasking). This is the default mode. 

 



All these operations are processed by the ‘extractor’ kernel function. When the next chunk is 

determined, it is sent to the ‘getjob’ issued OPU. Chunk processing will continue until all free 

OPUs are charged by job or queue becomes empty. 

Scheduler mode can be changed from Web Console prompt, entering a command schedule 

[1|2]. 

 

2.5 Multi-user environment 
 

Multi-user access is very important for this parallel machine. It lets users launch tasks 

independently and asynchronously. Every task in the system belongs to a particular user - and only 

that user can see his task's output. When some user is registered in the system, they get their 

own workspace with examples. They can then modify and save any file in their workspace, as well 

as to create new ones. The user's launched tasks may, in fact, execute in parallel. It depends on 

how often tasks wait for parallelization in assembly points (look at the previous section for this 

term). Such tasks behavior is often called cooperative multitasking. All tasks in the system should 

give a 'breath' for all other tasks in the system, and the #pragma wait instruction is a way to do 

this. 

2.6. Web console and system commands 

The PJM has a Web interface, consisting of personalized file manager, instant file editor, news 

pane and real-time message console. A user’s filesystem is ‘jailed’ and everyone’s root folder is 

different. At the initial start of the system default anonymous user filesystem is read-only. When 

the real user logs in, it enters to its root filesystem, which is fully read-write. To get real user 

access, a user must be created by registering in the system. Every new filesystem is provided with 

a folder called ‘examples, where all the tests and benchmarks reside. 

When some file is selected, its content is shown in the editor below the file manager. Files can 

be modified, saved (except for anonymous) and ran. All runnable files in this system have a .js 

extension, because all parallel programs are written in JavaScript. 

The Web Console works as is usual for WebApps – using the HTTP protocol. But console 

messages (at the bottom) work using Web Sockets. Messages come from various sources and 

immediately both ways – from and to the system server, as well as from OPUs, tunneling them 

through the system server. All parallel programs’ output is directed to console, as well as error 

reporting and other system messages. Also, the system has several command line commands for 

various purposes, most of them for system monitoring.  

Here is a full list of internal commands: 

 

• help or ?  – show commands list; 

• status – shows queue length, number of active tasks and number of OPUs; 

• queue [n] – lists queue entries; n – list last [n] entries; 

• schedule [n] – set/get scheduler mode: 

1 – in queue order; 

2 – tasks round-robin; 

no parameter – shows current mode; 

• log […] – logs variable like in console.log; 

• clear – clears console; 

• tasks | ts [all] – lists active tasks; 

all – lists all tasks; 



• task | t[n] – views last task; 

n – view task number n; 

• kill <n> - kill task number n; 

• disable <n> - disable OPU number n; 

• enable <n> - enable OPU number n; 

• mload | ml – machine load (1.0 – optimal) 

For now, all console commands are accessible to all users (for debugging purposes). 

 

3. Examples and benchmarks 

 

Examples are created for every new user registered in the system and reside in the ‘examples’ 

directory right next to the user’s virtual ‘root’. When entering ‘examples’ the user can see many 

directories, where the most notable one is the ‘trivia’ directory. This directory contains several 

simple examples that are made to easily compare the running time between sequential and parallel 

versions of tasks. 

Here are the benchmarks of the programs in ‘trivia’ directory: 

 

Program seq.js par.js – 8 OPUs Performance gain 

blocks 13.3 sec 1.9 sec 7x 

double_loop 3 min 3 sec 56.9 sec 3.2x 

for_loop 5.7 sec 1.6 sec 3.6x 

long_funcs 13.3 sec 1.9 sec 7x 

while_loop 23.3 sec 6.6 sec 3.5x 

    Table 1. ‘trivia’ benchmarks 

 

Next notable examples are in the ‘rendering’ directory. It contains two ray-tracing examples 

with 300 objects (small scene) and with 3000 objects (big scene). These examples are from the 

class of ‘embarrassingly’ parallel tasks, where the rendering of each pixel is absolutely 

independent from rendering other pixels. Here are the benchmarks: 

 

Program seq.js par.js – 8 OPUs par.js – 16 OPUs par.js – 20 OPUs 

raytracer 7.8 sec 2.2 sec                  3.5x 

raytracer-bigscene 747 sec 199 sec 76.1 sec 67.6 sec         11x 

     Table2. raytracer benchmarks 

 

Other examples are created to prove some of the “Berkeley dwarves” [1] problems. So far, 

only two dwarves are created and their level of parallelization examined. Here are the results: 

 

Program seq.js par.js – 8 OPUs Performance gain 

embarrassingly-parallel 

(Monte Carlo) 

22.3 sec 6.3 sec 3.5x 

barnes_hut 

(N-Body-problem) 

7.87 sec 7.67 sec 1.03x 

          Table 3. “Berkeley dwarves” benchmarks 



 

The reason why the ‘barnes_hut’ parallel algorithm doesn’t show better results is yet to be 

investigated. This algorithm was ported from NESL language literally and it should be possible to 

refactor this algorithm in the future. 

 

And finally, there is a class of examples under the directory ‘linear_programming’. Linear 

Programming (LP) is a linear optimization method to solve linear equations with NxM constraints 

matrix and M-dimension vector. The examples algorithm uses quite a rare combination of 

coordinate descent and conjugate gradients methods. It’s taken from [6], p.437. There are three 

examples with different matrix size – 150x500, 200x500 and 300x500. Each example was 

calculated using 5 OPUs, which had been considered optimal for these kind of tasks. All parallel 

versions performed 1.5 – 4 times faster than sequential counterparts.  

It must be noted that this improvement is not because of native parallel behavior of the 

algorithm, but because of the increased convergention speed. The parallel version creates 5 

variated independent streams of optimization paths. After each iteration, the variator variable ‘k’ 

is assigned to the most optimal path, decided by the value of minimal matrix norm ||x||g. 

These examples are not to show the best solution for LP. Simplex method is still better for 

classical LP setup. These examples only show the possibility to improve iterative methods to solve 

them much faster. And even for LP there are super-large setups that can be solved faster than 

Simplex method. 

Below are the benchmarks for all three LP setups: 

 

Program seq.js par.js – 5 OPUs Performance gain 

linit-150x500 137 sec 32 sec 4.3x 

linit-200x500 260 sec 172 sec 1.51x 

linit-300x500 2905 sec 2055 sec 1.41x 

         Table 4. “Linear Programming” benchmarks 

 

All benchmarks are performed on 8 x 11th Gen Intel Core i5-1135G7 @ 2.40 GHz. 

 

4. Programming in JPM 

 

Parallel programs for JPM must respect several rules: 

• Parallelization is possible only in global scope, - not in functions; 

• Functions work as helpers (like in procedural style of programming) and mostly are 

for code structuring, thus function programming as well as parallelizing inside 

functions are not possible; 

• No classes OOP, instead convert them to the prototypal OOP; 

• All variables must be declared using keyword ‘var’; 

• JavaScript features should comply to the ES5 standard; 

• No inline (‘arrow’) functions; 

• No ‘async/await’; 

• Modules loaded by ‘require’ keyword are not allowed (for security reasons); 

 



5. The Timeout Problem 

 

One of the main possible problems in the proposed Object Flow Model (another name for the 

proposed parallel computing model) that stands in front of all others - is a Timeout problem. This 

problem is similar to the well-known Halting problem [4], the paraphrased version of which could 

be the following: “Given a program and an input to the program, determine how long the program 

will be executed when it is given that input.”  

For our parallel model this question becomes very important. How long should any variable 

wait for the result? What time is to be set to finally ensure that the variable cannot be unlocked, 

because of possible fault, looping, connection lost or whatever else issues? This is also important 

for choosing alternative paths in case of errors.  

One possible solution is to make parallel operations so smooth that occasionally occurring  

long timeouts could mean an inevitable fault. However, this solution stops working when a high 

level of parallelization hierarchy is reached.  

Another possible solution is a prediction by fact mechanism. We can set predicted and/or 

predefined timeout values based on previous execution times of similar or same operations.  

In any case, the Timeout problem is still an open question and may be qualified as the most 

important problem. 

  

6. Source code 

The source code is available here for free and unlimited use. Extract this tarball from the root 

filesystem in Linux.  

It’s open-sourced under MIT license. © 2024, Prodata. 

7. Conclusion 

The proposed Object Flow Model shows how it can be possible to design self-parallelized 

programming languages and systems and, at the same time, to fully utilize any dynamic range of 

available processor units (or OPUs) in a self-balanced way.  

Object Flow Model also shows that parallel programs may completely eliminate any 

sequential parts out of a program. Even seemingly strict sequential parts of a program may become 

just a set of occasional mutual wait operations, which are, in their turn, executed in parallel.  

There is no place for sequential programming in this model anymore. And this is the most 

important result of proposed model, which may revise or even break the famous Amdahl’s – 

Gustafson’s Law [5] in some near future. 
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