
PARALLEL MULTIPROCESSOR COMPUTING MODEL

 USING PARALLEL JAVASCRIPT MACHINE

Vladas Saulis

PRODATA PE, Debreceno St. 35-8, LT-94166 Klaipeda, Lithuania

Site: http://parallel-js.net:81, e-mail: saulis.vladas@gmail.com

March 14, 2024

Abstract

This paper presents a new programming model that can utilize multi-core CPU

systems in a simple and auto-balanced way. This model also proposes an easier

programming paradigm for developing parallel tasks and systems in most massively

parallel computation areas, such as weather prediction, nuclear physics, search

engines, etc.

In recent times we are facing a new shift in computing philosophy, caused by

advance of new hardware architecture and even better performance. Multi-core

architecture will become prevailing technology in the near future.

What can we do in order to take advantage of this? This paper is about one of the

possible solutions we can have.

The proposed computing model (which is named “Object Flow Model”) also

provides some answers to questions raised in the well-known published paper form

Berkeley [1]. Here is a short list of advantages that can be reached using this model:

• Simple programming process and further maintenance

• Natural OPU (CPU) integration and migration when object processing units

(OPUs) can be added or removed on the fly

• Automatic load-balancing

• No need for synchronization between task parts

• Little or no mutual locking on the system level

All these characteristics are implemented in the Parallel JavaScript Machine (PJM),

which is described below in this document. PJM may be perceived as a mini

operation system which controls multiple JavaScript tasks, multiple users and

multiple front-end consoles.

1. Introduction

The main goal of PJM (OS) is to simplify parallel programming by introducing special instructions

(hints) that are represented by specifically crafted comments in form of //#pragma <name>.

The Parallel JavaScript Machine uses NodeJS, and is implemented as a Web server for the

frontend, as well as a server for the OPUs that really do the parallel execution of code. OPUs

are small JavaScript network clients implemented in NodeJS too. There may be as many of

them as necessary, connected to the main parallel machine server either locally or remotely.

The overall performance of parallel processing strongly depends on the number of connected

OPUs.

All system parts, working together, may be understood as a mini-OS which launches and

parses the running JavaScript tasks, puts their chunks into system execution queue and provides

http://parallel-js.net:81/
mailto:saulis.vladas@gmail.com

some kind of cooperative multitasking between selected chunks. The calculation results are

printed to the Web client's console by pipelining console.log output from OPUs through

the main server. Every OPU is assigned to its own CPU (local or remote) and works through a

simple round-robin scheduler (will be explained later). This is achieved by use of PM2 process

manager Node module.

“Although compatibility with old binaries and C programs is valuable to industry, and some

researchers are trying to help multicore product plans succeed, we have been thinking bolder

thoughts. Our aim is to realize thousands of processors…”[1] not necessary on the single

physical computer, but throughout the network, all orchestrated by the central server unit. From

the system point of view all CPUs/OPUs are operating via internal network socket protocol

which doesn’t make distinction between local and remote CPUs. The server (PJM) and clients

(OPUs) – all written in JavaScript, so it’s not compatible with C binaries [yet].

All parallel programs, which are running in PJM, must not be using ES6+ JavaScript

extensions (must be using ES5). It’s important to state here that such extensions as classes,

arrow functions, lets and consts, and, especially, async/await are hardly parallelizable,

requiring more thorough JavaScript internals research. This is why PJM is running on NodeJS

V8.2.1. All node modules are locked to this version for better performance and clarity of

concepts.

PJM is controlled and tasks are running using Web Console which resides at http://parallel-

js.net:8888. Here is how it usually look like:

Fig. 1 Parallel JavaScript Machine Web Console

The Web Console is written using the ExtJS framework and connected to the PJM server

with the use of express.js HTTP NodeJS module. Another part of Web Console (called Console

and Messages) is connected using WebSockets. This is where all programs’ output and system

messages are coming in real time. It is important to know that no real calculations are performed

in the Web Console – all calculations are done on the PJM server and OPUs.

http://parallel-js.net:8888/
http://parallel-js.net:8888/

2. System design and implementation

Consider following trivial code snippet:

for (i = 0; i < N; i++) {

 a = a + b[i] * c[i];

} example 1.

Now, after inserting //#pragmas for parallel execution, the same code will look as follows:

//#pragma parallel

//#pragma parvar a

for (i = 0; i < N; i++) {

 a = a + b[i] * c[i];

}

//#pragma wait example 1a.

2.1. #pragmas – an instrument for parallelization

All of #pragmas are interpreted during task (the running parallel JS program) launch and

initialization. First, recursive parallelizer, then – analyzer, both of them find and apply all #pragma

hints.

Here is a complete list of #pragmas with their meanings (omitting the pragma keyword):

• sequential – runs task in legacy sequential mode;

• parallel – running next part of task in parallel mode;

• wait – it is an assembly point of a program; system waits for all program chunks to

be finished, and all parvars are in unlocked state; system enters idle state (if no other

tasks are running) and calls parallelizer;

• parvar <varname> - automatically handles var’s locking and unlocking between

program chunks;

• noautoparvar – disable automatic handling of all parvars; manually use get and

set functions (explained below);

• beginblock – mark the beginning of parallel block, creating new task chunk for

execution on OPU;

• endblock – set the end of parallel block chunk and send chunk to execution queue;

• cache <varname> – cache task variable to current OPU;

• cachefuncs – cache all functions to current OPU;

• dive – parse AST of current loop for parallelizing inner loop;

• remotedom/noremotedom – turn on/off remote DOM feature;

• dombuffersize <number> – number of DOM operations in the buffer;

• keepsetvars/resetsetvars – keep/reset static variables;

• starttime – report program start time;

• endtime – report program end time;

• numopus – overall active OPUs number in the system; creates internal variable

__numOPU;

There also are internal OPU functions which are handful for direct use in programs:

• __get_Par_Var_Value(<varname>, <force lock>, __job) – get task

variable from the server and lock it, if it’s possible. Force locking if the second

parameter is true;

• __set_Par_Var_Value(<varname>, <varvalue>, __job,

<force>, <slice>)- set task variable, unlocking it; force unlock if force is

true; slice array if applicable;

• __RPC_set(<varname>, <varvalue>, __job, <force>,

<script>, <params>, <taskvars>) – remote script invocation on the

server;

• __remoteDOM(<script>) – DOM functions, as well as other operations, which

are passed through the server to Web client using WebSocket;

• __read_File_Sync(<path>, <blocking>, __job) - read any file from

program’s directory;

• __write_File_Sync(<path>, <data>, <options>, <append>,

__job) – write to the file in program’s directory;

2.2. Tasks, Task variables and Queue

Like any other OS, the Parallel JavaScript Machine Mini-OS has a kernel. The kernel operates

with such internal structures as the Queue object, Task list and Task variables object.

When the task is launched, its source code is passed to parallelizing function, where it is

separated into single statements (also can be grouped in blocks). Every statement or block then

enqueued into the system's Queue for execution by OPUs, which are connected to the server and

extract these statements from the Queue one by one in no predetermined OPU order. In parallel

programming terms it is said that the tasks are parallelized on the statement level, or

with statement granularity.

The parallelization process is controlled by special instructions (or hints), called #pragmas.

Some of them sets the start of parallel/sequential code, other sets beginning/end of blocks, parallel

variables (so-called Parvars), begin/end of the process timing. One of them, #pragma wait, is very

important for the parallelization flow control and marks the assembly point in the task. At this

point the parallelization of the task is suspended until all pending parallel chunks of code have

finished their execution (for parallel loops it waits for all iterations to complete). After that the

process of parallelization resumes from this point. The 'wait' process in the system is really non-

blocking, letting other parts of the task continue their execution, which is exactly opposite to the

ordinary one-threaded JavaScript interpreter.

During the process of parallelization, when some statements contain an internal block of

statements (such as loops, marked blocks), the analyzer function is called. It provides more

specialized lexical interpretation of code logic. For example, it interprets for loop's initial

expression, condition and step. This information is then added to the parallel code chunks as an

extra internal code.

Another important part of parallel tasks execution is the task variables handling. All task's

variables are stored within the server Task object. Before the task chunk is put into the Queue,

the parallelization function determines which variables are in use within this chunk. It puts these

variables along with their values as a definition to the preamble of the code. After execution of the

code chunk, the resulting values of variables are returned and set back to the server's task variables

object.

There are some special parallel variables (Parvars), which are handled differently. These

variables are declared by the #pragma parvar <var name> special instruction. This means that

these variables can be accessed and set concurrently. All 4 basic arithmetic operations are transitive

(if processed one by one), so they can be processed in any order, and the result will always be the

same. The parallel for loop works exactly in this way. So, the accumulator variable for the loop

must be set in the way that it could be accessed and modified concurrently. This is what Parvars are

for. The kernel adds additional code fragments that synchronously calls the main server for parallel

variable value and locks it in order to be modified after the code chunk had finished its execution.

It is important that the code chunk needs to be fast and atomic, so it would lock the parvar for as

short a time as possible.

Here is a bird’s-eye view picture of OPU parallel processing model:

Figure 2. OPU parallel processing model – Parallel JavaScript Machine

2.3. Object processing unit

The OPU (Object Processing Unit) is a lightweight networking client (worker) which does the

actual processing of parallelized chunks of code. OPU connects to the main server and scans the

Queue for the next job in FIFO manner. When it finds a job, it executes it, returns the result (task

variables) and scans again. If no jobs are found it enters an idle loop and waits. Therefore, OPUs

are pro-active because they initiate job extracting and processing. There may be an unlimited

number of OPUs, connected to the main server - locally or remotely - and working independently.

Their number is only limited by the server's processing power and the network speed.

Figure 3 OPU dependence on Queue

The OPUs have another very important function. When they meet Parvars, they connect

directly to the main server to get real time value of Parvar, and after Parvar has changed its value,

they connect again and set its changed value to the corresponding task variable. When OPUs are

processing Parvars in such a way, these are locked on the server to prevent race condition. Thus,

it's said that the system has data bound control flow, which is opposite to the statement level control

flow, as is usual for non-parallel systems.

The main principles of the OPU relations with the PJM are the following:

• Unidirectional flow of control

All calculations in the system are done through the queue, with no

acknowledgement or return of control from OPU, which will be in charge

of executing the particular operation (or object). The result of any operation

is always a direct manipulation with the task’s persistent variables object.

• No return points in program logic flow

This means that there is no place for legacy functions and procedures in

OPU model, because they provide return values and that can regulate the

flow of control.

• No processes as solid code chunks in RAM memory, which are executed on

assigned CPU(s). There is a persistent object database in any memory

instead.

• OPUs are pro-active

Each OPU is responsible for extracting the object from queue for execution.

No one OPU can be charged to do some tasks from outside.

• OPUs can be added or removed dynamically

When any new OPUs appear in the system, they just start doing their job –

extracting and executing code from the queue. By analogy, any removed

OPU just stops extracting the code from the object queue. So when system

performance goes down, you can simply add some amount of OPUs to the

system to improve performance (remember – they can be remote).

• Any OPU can pass to execute any operation remotely as well, by putting it to the

queue.This is the most important thing to understand. This is the very basis of the

OPU computing model. This is the gateway to true parallelism (now in

development).

As is evident, everything in the system is spinning around the queue. And the only measure

of overall system performance is - the current length of the queue.

To sum everything up, below is a list of characteristics and some unusual side effects of the

OPU computing model:

• Self load-balancing

• Seamless OPU migration

• Prioritizing using OPU groups (real-time, normal, batch)

• Simple programming at application level

• Programming logic becomes a state transition logic, and not sequential

• No threads, minimum locking and race conditions at the system level

• High system reliability; in case of failure of some OPUs, the whole system still

remains stable.

• Object reuse and method reloading on the system level

• Another similar object can be requested in case the current object fails

• Inter-task communication (former IPC) – simply by placing a foreign task’s object

to the queue.

• Direct object injection into the queue (in future versions)

2.4. System scheduler and Idle cycle

All OPUs are connected to the main system server via single network socket in non-blocking

mode. When no new task chunks are available, the OPU enters an ‘idle’ state and waits for a

‘wake-up’ command, which is sent when a new chunk has appeared in the system queue. Every

new chunk, when posted to the queue, is followed with the ‘wake-up’ command. When OPU gets

the ‘wake-up’, then it sends ‘getjob’ back to the server to get new job.

As soon as the system server receives the ‘getjob’ command, it calls parallelizer (when all

current chunks are finished), with possibly new chunks added to the system queue, and then it

enters system scheduler. System scheduler works around system queue and has two modes:

1 – chunks are processed in queue order (FIFO);

2 – chunks are processed in tasks order (cooperative multitasking). This is the default mode.

All these operations are processed by the ‘extractor’ kernel function. When the next chunk is

determined, it is sent to the ‘getjob’ issued OPU. Chunk processing will continue until all free

OPUs are charged by job or queue becomes empty.

Scheduler mode can be changed from Web Console prompt, entering a command schedule

[1|2].

2.5 Multi-user environment

Multi-user access is very important for this parallel machine. It lets users launch tasks

independently and asynchronously. Every task in the system belongs to a particular user - and only

that user can see his task's output. When some user is registered in the system, they get their

own workspace with examples. They can then modify and save any file in their workspace, as well

as to create new ones. The user's launched tasks may, in fact, execute in parallel. It depends on

how often tasks wait for parallelization in assembly points (look at the previous section for this

term). Such tasks behavior is often called cooperative multitasking. All tasks in the system should

give a 'breath' for all other tasks in the system, and the #pragma wait instruction is a way to do

this.

2.6. Web console and system commands

The PJM has a Web interface, consisting of personalized file manager, instant file editor, news

pane and real-time message console. A user’s filesystem is ‘jailed’ and everyone’s root folder is

different. At the initial start of the system default anonymous user filesystem is read-only. When

the real user logs in, it enters to its root filesystem, which is fully read-write. To get real user

access, a user must be created by registering in the system. Every new filesystem is provided with

a folder called ‘examples, where all the tests and benchmarks reside.

When some file is selected, its content is shown in the editor below the file manager. Files can

be modified, saved (except for anonymous) and ran. All runnable files in this system have a .js

extension, because all parallel programs are written in JavaScript.

The Web Console works as is usual for WebApps – using the HTTP protocol. But console

messages (at the bottom) work using Web Sockets. Messages come from various sources and

immediately both ways – from and to the system server, as well as from OPUs, tunneling them

through the system server. All parallel programs’ output is directed to console, as well as error

reporting and other system messages. Also, the system has several command line commands for

various purposes, most of them for system monitoring.

Here is a full list of internal commands:

• help or ? – show commands list;

• status – shows queue length, number of active tasks and number of OPUs;

• queue [n] – lists queue entries; n – list last [n] entries;

• schedule [n] – set/get scheduler mode:

1 – in queue order;

2 – tasks round-robin;

no parameter – shows current mode;

• log […] – logs variable like in console.log;

• clear – clears console;

• tasks | ts [all] – lists active tasks;

all – lists all tasks;

• task | t[n] – views last task;

n – view task number n;

• kill <n> - kill task number n;

• disable <n> - disable OPU number n;

• enable <n> - enable OPU number n;

• mload | ml – machine load (1.0 – optimal)

For now, all console commands are accessible to all users (for debugging purposes).

3. Examples and benchmarks

Examples are created for every new user registered in the system and reside in the ‘examples’

directory right next to the user’s virtual ‘root’. When entering ‘examples’ the user can see many

directories, where the most notable one is the ‘trivia’ directory. This directory contains several

simple examples that are made to easily compare the running time between sequential and parallel

versions of tasks.

Here are the benchmarks of the programs in ‘trivia’ directory:

Program seq.js par.js – 8 OPUs Performance gain

blocks 13.3 sec 1.9 sec 7x

double_loop 3 min 3 sec 56.9 sec 3.2x

for_loop 5.7 sec 1.6 sec 3.6x

long_funcs 13.3 sec 1.9 sec 7x

while_loop 23.3 sec 6.6 sec 3.5x

 Table 1. ‘trivia’ benchmarks

Next notable examples are in the ‘rendering’ directory. It contains two ray-tracing examples

with 300 objects (small scene) and with 3000 objects (big scene). These examples are from the

class of ‘embarrassingly’ parallel tasks, where the rendering of each pixel is absolutely

independent from rendering other pixels. Here are the benchmarks:

Program seq.js par.js – 8 OPUs par.js – 16 OPUs par.js – 20 OPUs

raytracer 7.8 sec 2.2 sec 3.5x

raytracer-bigscene 747 sec 199 sec 76.1 sec 67.6 sec 11x

 Table2. raytracer benchmarks

Other examples are created to prove some of the “Berkeley dwarves” [1] problems. So far,

only two dwarves are created and their level of parallelization examined. Here are the results:

Program seq.js par.js – 8 OPUs Performance gain

embarrassingly-parallel

(Monte Carlo)

22.3 sec 6.3 sec 3.5x

barnes_hut

(N-Body-problem)

7.87 sec 7.67 sec 1.03x

 Table 3. “Berkeley dwarves” benchmarks

The reason why the ‘barnes_hut’ parallel algorithm doesn’t show better results is yet to be

investigated. This algorithm was ported from NESL language literally and it should be possible to

refactor this algorithm in the future.

And finally, there is a class of examples under the directory ‘linear_programming’. Linear

Programming (LP) is a linear optimization method to solve linear equations with NxM constraints

matrix and M-dimension vector. The examples algorithm uses quite a rare combination of

coordinate descent and conjugate gradients methods. It’s taken from [6], p.437. There are three

examples with different matrix size – 150x500, 200x500 and 300x500. Each example was

calculated using 5 OPUs, which had been considered optimal for these kind of tasks. All parallel

versions performed 1.5 – 4 times faster than sequential counterparts.

It must be noted that this improvement is not because of native parallel behavior of the

algorithm, but because of the increased convergention speed. The parallel version creates 5

variated independent streams of optimization paths. After each iteration, the variator variable ‘k’

is assigned to the most optimal path, decided by the value of minimal matrix norm ||x||g.

These examples are not to show the best solution for LP. Simplex method is still better for

classical LP setup. These examples only show the possibility to improve iterative methods to solve

them much faster. And even for LP there are super-large setups that can be solved faster than

Simplex method.

Below are the benchmarks for all three LP setups:

Program seq.js par.js – 5 OPUs Performance gain

linit-150x500 137 sec 32 sec 4.3x

linit-200x500 260 sec 172 sec 1.51x

linit-300x500 2905 sec 2055 sec 1.41x

 Table 4. “Linear Programming” benchmarks

All benchmarks are performed on 8 x 11th Gen Intel Core i5-1135G7 @ 2.40 GHz.

4. Programming in JPM

Parallel programs for JPM must respect several rules:

• Parallelization is possible only in global scope, - not in functions;

• Functions work as helpers (like in procedural style of programming) and mostly are

for code structuring, thus function programming as well as parallelizing inside

functions are not possible;

• No classes OOP, instead convert them to the prototypal OOP;

• All variables must be declared using keyword ‘var’;

• JavaScript features should comply to the ES5 standard;

• No inline (‘arrow’) functions;

• No ‘async/await’;

• Modules loaded by ‘require’ keyword are not allowed (for security reasons);

5. The Timeout Problem

One of the main possible problems in the proposed Object Flow Model (another name for the

proposed parallel computing model) that stands in front of all others - is a Timeout problem. This

problem is similar to the well-known Halting problem [4], the paraphrased version of which could

be the following: “Given a program and an input to the program, determine how long the program

will be executed when it is given that input.”

For our parallel model this question becomes very important. How long should any variable

wait for the result? What time is to be set to finally ensure that the variable cannot be unlocked,

because of possible fault, looping, connection lost or whatever else issues? This is also important

for choosing alternative paths in case of errors.

One possible solution is to make parallel operations so smooth that occasionally occurring

long timeouts could mean an inevitable fault. However, this solution stops working when a high

level of parallelization hierarchy is reached.

Another possible solution is a prediction by fact mechanism. We can set predicted and/or

predefined timeout values based on previous execution times of similar or same operations.

In any case, the Timeout problem is still an open question and may be qualified as the most

important problem.

6. Source code

The source code is available here for free and unlimited use. Extract this tarball from the root

filesystem in Linux.

It’s open-sourced under MIT license. © 2024, Prodata.

7. Conclusion

The proposed Object Flow Model shows how it can be possible to design self-parallelized

programming languages and systems and, at the same time, to fully utilize any dynamic range of

available processor units (or OPUs) in a self-balanced way.

Object Flow Model also shows that parallel programs may completely eliminate any

sequential parts out of a program. Even seemingly strict sequential parts of a program may become

just a set of occasional mutual wait operations, which are, in their turn, executed in parallel.

There is no place for sequential programming in this model anymore. And this is the most

important result of proposed model, which may revise or even break the famous Amdahl’s –

Gustafson’s Law [5] in some near future.

References

[1] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands, K. Keutzer, D. A. Patterson, W. L. Plishker, J.

Shalf, S. W. Williams, K. A. Yelick. The Landscape of Parallel Computing Research: A View from Berkeley. Technical

Report No. UCB/EECS-2006-183, Electrical Engineering and Computer Sciences University of California at Berkeley,

December 18, 2006.

[2] V. Saulis. Infinite Power Computing Theory. Posts series at Medium, https://medium.com/@saulis.vladas, 2007.

[3] C. Saulnier. Software Development by Vorlath. Blog posts series, http://my.opera.com/vorlath/blog, 2006-2008

[4] A. Turing. On computable numbers, with an application to the Entscheidungsproblem. Proceedings of the London

Mathematical Society, Series 2, 42 (1936), pp 230-265, 1936.

[5] G. Amdahl. Validity of the Single Processor Approach to Achieving Large-Scale Computing Capabilities. AFIPS

Conference Proceedings, (30), pp. 483-485, 1967.

[6] R.P. Fedorenko. Approximate solution of optimal control problems, Moscow, Science, 1978

http://parallel-js.net:81/EN/Prodata/pjm/PJM-0.55.113.tgz

